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Abstract

Spin-density functional theory (SDFT) calculations of the d–f exchange coupling for the pseudo-one-dimensional (pseudo-1-D)

chain compound Gd2Cl3 has been carried out using the 1-D model, Gd8Cl12ðOPH3Þ4; by considering seven variations in the

ordering of the 4 f 7 moments. The calculations indicate that this semiconducting system should exhibit antiferromagnetic ordering

of the 4 f 7 moments in a pattern consistent with published neutron diffraction data. An attempt to account for the calculated

magnetic energies of spin patterns using an Ising model was unsuccessful, indicating that the latter model is inappropriate. The

qualitative features can be interpreted using a perturbative molecular orbital model that focuses on the influence of the 4 f 7–d

exchange interaction on the d-based molecular orbitals. Fundamental to the d-electron-mediated exchange mechanism is the intra-

atomic 4 f 7–d exchange interaction. The essence of this interaction is present in the Gd atom ½4 f 75d16s2�; which is computationally
investigated within SDFT. In Gd2Cl3; the d-electron-mediated f –f exchange interaction was interpreted using basic perturbation

theory. Computed density of states and spin polarization information was used to support the perturbation-theoretic analysis.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Experimentalists investigating magnetic materials
clearly need theoretical tools that are capable of
supplying at least semiquantitative descriptions of
magnetically coupled systems so that empirical data
can be organized and fitted to appropriate physical
models [1]. In addition, qualitative understanding of
magnetic exchange in the many different kinds of such
coupled systems is imperative for the design of novel
inorganic materials with specific magnetic properties.
Researchers have been able to determine the strength

and nature of coupling between magnetic centers by
gathering data from various experimental sources,
including magnetic susceptibility, spin-polarized neu-
tron diffraction, and inelastic neutron scattering [2].
More recently, many have applied modern computa-
tional techniques to correlate geometric and electronic
structure in efforts to elucidate general trends concern-
ing the strength of magnetic exchange. The electronic

structures of complex solid-state materials have been
extensively studied at the tight-binding (e.g., extended
Hückel) level and such treatments can provide a
qualitative description of magnetic exchange within a
proper interpretive scheme [3–5]. Recently, more quan-
titative descriptions are moving within reach of many
magnetochemists using methods based on density
functional theory (DFT) and the broken-symmetry
approach, which provide reasonable estimates for the
exchange coupling constants for a variety of compounds
[1,6–9].
A common theoretical/computational method of

determining the strength of exchange is based on a
spin-dimer analysis of the extended solid [3]. In this
approach, one constructs truncated model dimers, and
results from the computational studies are used to
supply the pairwise-coupling parameters in model
Hamiltonians (e.g., Heisenberg or Ising) describing the
magnetic properties of the solid. Even if the quantum
mechanical method is adequate to tackle this task,
several issues arise in evaluating the approach, namely
the appropriateness of the selected model Hamiltonian
and the possible uncertainty introduced from structural
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truncation into the computed parameters. Can the
magnetic coupling energy of the solid really be expressed
as a sum of pairwise-additive effective exchange inter-
action energies? If the comparison of experimental data
to theory only relies on magnetic susceptibilities, how
much confidence can we have in a semiempirical spin-
dimer treatment that may include scaling the magnitude
of all the exchange parameters as part of the treatment?
Our interest lies in Gd-rich systems (clusters and

solids) where Gd magnetic moments are subject to
significant interatomic exchange coupling. Of the
elements that produce magnetic materials, open-4 f -
shell rare-earth elements provide one of the richest
regions for interesting and useful magnetic and con-
ducting properties. However, efforts to understand the
relationship between structure and magnetic properties
of rare-earth magnetic materials have been hindered
because of the complex nature of their magnetic
interactions. Difficulties in understanding the key
factors controlling magnetic properties are an obstacle
to further rational experimental development of this
field. Hence, there exists a need for chemically useful yet
physically realistic localized bonding schemes that can
serve to interpret and predict magnetic behavior in
polynuclear lanthanide molecules. The task of building
theoretical models for application to rare-earth com-
pounds that are of general applicability, analogous to
the Goodenough [10] rules, or the Hay–Thibeault–
Hoffmann [11] and Kahn–Briat [12] models, has been
challenging.
In efforts to understand the nature of magnetic

behavior in rare-earth-rich systems, we have conducted
molecular orbital and band structure calculations where
the energies and orbitals of such systems are compared
as we variably impose ordering patterns of the 4 f 7

spins. In a previous paper, we treated a molecular model
system, ½ðGd3I6ÞðOPH3Þ6�

nþ (n ¼ 1; 2, 3) and focused on
the manner in which metal–metal bonding 5d electrons
mediate the coupling of 4 f electrons [13]. In conven-
tional molecular chemistry, mono- and polynuclear Gd
complexes contain the metal in the 3+ oxidation state,
corresponding to the ½ðGd3I6ÞðOPH3Þ6�

3þ ion. Our
treatment focused on the case where n ¼ 2 or 1, where
one or two electrons, respectively, are involved in
Gd–Gd bonding.
In this paper, our focus is on magnetic ordering in the

pseudo-one-dimensional (pseudo-1-D) chain compound,
Gd2Cl3 [14]. We have performed several spin-density
functional theory (SDFT) band structure calculations
on a 1-D model for this system in which we have
considered a number of variations in the ordering
patterns of the 4 f 7 spins, including a ferromagnetic
pattern (maximum magnetization), one ‘‘ferrimagnetic’’
pattern (intermediate magnetization), and several anti-
ferromagnetic patterns (zero total magnetization). The
energy of each such spin-ordering pattern can be

evaluated simply within an Ising-like model, and
Heisenberg exchange parameters can then be inferred.
Because a neutron diffraction study has been con-

ducted on Gd2Cl3 [15], this system offers us an
important benchmark for testing the use of the
broken-symmetry SDFT method for evaluating mag-
netic coupling in Gd-rich compounds. The use of SDFT
band structure calculations frees us from uncertainties
inherent to the spin-dimer approach mentioned in the
introductory remarks above. As we shall see, these
calculations also shed light on the question of whether
magnetic coupling should be described in terms of
pairwise interactions in reduced Gd-rich compounds.

2. Theoretical background

Exchange interactions between two paramagnetic
centers are phenomenologically described using the
Heisenberg–Dirac–Van Vleck (HDVV) spin Hamilto-
nian [16–18]

Ĥ ¼ �JijŜiŜj; ð1Þ
where Jij is the magnetic coupling constant describing
the spin exchange between different spin states and Ŝi

and Ŝj are the total spin operators for atoms i and j: The
sign of the magnetic coupling constant is such that Jij is
positive for ferromagnetic coupling and negative for an
antiferromagnetic interaction.
In the simplest example of a magnetically coupled

system, a dimer where S1 ¼ S2 ¼ 1
2
; the four basis spin

determinants are jaaS; jbbS; jabS; and jbaS: Since Ĥ;
the total spin operator Ŝ2; and the z-component of the
spin operator, Ŝz; commute, it is possible to determine a
set of eigenfunctions relating all three operators. The
eigenfunctions of Ŝ2 and Ŝz are denoted as jS;MsS
and it is straightforward to show that j1; 1S ¼ ja; aS and
j1;�1S ¼ jb; bS; whereas determinants j0; 0S and j1; 0S
consist of a linear combination of ja; bS and jb; aS: The
coupling constant may then be obtained as the energy
difference between the singlet and triplet states.
In extended systems, all possible pairwise interactions

are considered, yielding the HDVV spin Hamiltonian

Ĥ ¼ �
X
ioj

Jij ŜiŜj; ð2Þ

the summations usually include only neighbors (i and j)
that are in proximity to each other. In many cases, it is
difficult or impossible to find the eigenfunctions of the
HDVV spin Hamiltonian. A common alternative for
computation of the magnetic coupling constant is to
make use of the simpler Ising Hamiltonian ðĤIÞ [19–21],
where the total spin operators are replaced by their z-
components:

ĤI ¼ �
X
ioj

J 0
ij Ŝz;iŜz;j: ð3Þ
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J 0
ij values are calculated directly from energy differences
between the states of maximum and minimum MS; the
so-called ‘‘ferromagnetically coupled’’ and ‘‘antiferro-
magnetically coupled’’ states, respectively. In the Ising
Hamiltonian, it is common to assign eigenvalues of +1
ðaÞ and �1 ðbÞ to the ‘‘pseudo-spin’’, so that the
magnitudes of the Ising and Heisenberg coupling
constants differ by quantities on the order of ŜiŜj :
Eigenfunctions of ĤI are not generally eigenfunctions of
Ŝ2; but are eigenfunctions of Ŝz; making it possible to
use MS as a quantum number. Considering again our
previous example where S1 ¼ S2 ¼ 1

2
; a pure ðMS ¼ 1Þ

component of the ferromagnetic state is explicitly
described as the determinant jaaS since it is a spin
eigenfunction. In contrast, the antiferromagnetic state
cannot be described because there are two determinants
with MS ¼ 0 (jabS and jbaS) and neither is an
eigenfunction of the total spin operator Ŝ2:
The Ising Hamiltonian can be connected to all the

unrestricted formalisms based on the single-determinant
approach of SDFT via the broken-symmetry approach.
The single-determinantal nature of SDFT poses pro-
blems because it does not allow the calculation of a pure
spin eigenfunction. As in the treatment using the Ising
Hamiltonian, the single-determinant description of the
high-spin states is straightforward (because high-spin
states are eigenfunctions of Ŝ2 and Ŝz and therefore
suffer no spin contamination). However, calculation of
the pure low-spin state is not possible and one is forced
to use a broken-symmetry approach which allows one to
calculate spin-state energy differences using the results
of a single-determinantal function [22,23]. Dai and
Whangbo recently explored the relationship of the
spin-dimer approach using broken-symmetry Heisen-
berg Hamiltonian and the magnetic solid approach
using the Ising Hamiltonian [24]. They showed that a
description of the spin–exchange interactions of a
magnetic solid treated with a Heisenberg spin Hamilto-
nian can be extracted from broken-symmetry SDFT
calculations that are most directly consistent with the
Ising spin Hamiltonian. In our results, we have
employed a broken-symmetry approach to evaluate the
magnetic coupling constants between Gd centers.

3. Broken-symmetry approach in gadolinium compounds

The 5d and 6s valence orbitals of lanthanide atoms
are diffuse, but in an important sense the 4 f electrons
are essentially core electrons—in highly contracted
orbitals that preclude appreciable overlap with neigh-
boring atoms [25]. Because such 4 f overlaps are so
small, superexchange coupling (mediated by overlap
with intervening ligand orbitals) between nearby lantha-
nide centers is largely precluded. Because of their core-
like radial extension, lanthanide 4 f electrons should not

be viewed as typical ‘‘band electrons’’. In rare-earth
intermetallic compounds, an indirect pathway involving
the localized 4 f electrons and the conduction band
electrons is responsible for magnetic ordering. When the
conduction electrons are spin-polarized, as in Fe- or Co-
rich compounds (e.g., Nd2Fe14B and SmCo5 and other
related permanent magnets), the exchange coupling to
the conduction electrons can be significant. Elemental
gadolinium is a metallic ferromagnet with an ordering
temperature just above room temperature. Within the
bulk metal, stabilizing 4 f –5d exchange induces some
spin polarization of 5d electrons in the vicinity of the
Fermi level that cooperatively aligns the 4 f moments
[26]. This indirect exchange mechanism, which was
originally treated in magnetically dilute systems
(RKKY exchange) [27–29], produces an effective 4 f –4 f

coupling and is responsible for the observed magnetic
properties.
Of course, in any real system where one might have a

single f electron on adjacent lanthanide centers (e.g., a
bimetallic cerium complex), spin–orbit coupling within
the 4 f -shell would have to be accounted for in addition
to interatomic f –f exchange. Thus, for handling
interatomic spin–exchange interactions in the rare-earth
elements, gadolinium offers the least complicated
starting point. For its ground configuration,
½Xe�4 f 75d16s2; the ground state and lowest excited
states are derived by coupling the 5d electron ð2DÞ with
the 8S state of the 4 f 7 core to give a 9D ground state
and an excited 7D state. Loosely speaking, these states
respectively correspond to the d-electron spin either
aligning with or against the exchange-coupled spins of
the f 7 core. The results of SDFT calculation of the atom
are discussed below. In this paper, we concern ourselves
entirely with systems containing 4 f 7 gadolinium centers,
where spin–orbit coupling effects are absent in first
order (for the 8S state of the 4 f 7 core) and can therefore
be safely neglected.
Our treatment of coupled Gd centers generalizes the

symmetry-broken approach. For two Gd centers, SDFT
can be used to calculate the energy of jm7;m7S and
jm7;k7S; for the formar expression, all seven of the
f -electrons on both Gd atoms are spin up, and for the
latter, all seven f -electrons on one Gd atom are spin up
and all seven on the other Gd atom are spin down.
jm7;m7S is a spin eigenfunction (S ¼ 7; MS ¼ 7) and
jm7;k7S; for which MS ¼ 0; can be expressed as a
combination of pure spin states with S ¼ 0; 1;y; 7:
The energy of the high spin state can be identified with
the energy obtained with the HDDV Hamiltonian
ðĤ ¼ �JŜ1 � Ŝ2Þ: Ejm7;m7S ¼ �49=4J: Because overlaps
between f orbitals on neighboring atoms are small,
/k7;m7jm7;k7SE0; we can express jm7;k7S as a
combination of pure states using the Clebsch–Gordon
coefficients (without overlap corrections) and obtain
from that an energy expression in terms of the set of

ARTICLE IN PRESS
L. Roy, T. Hughbanks / Journal of Solid State Chemistry 176 (2003) 294–305296



pure state energies, fESg [30]:
Ejm7;k7S ¼ 3

24
E0 þ 7

24
E1 þ 7

24
E2 þ 49

264
E3 þ 7

88
E4

þ 7
312

E5 þ 1
264

E6 þ 1
3432

E7: ð4Þ
Using the HDVV Hamiltonian, we can evaluate ES for
each of the pure states ðES ¼ ðJ=4ÞðSðS þ 1ÞÞÞ and
substitute into this expression to obtain

Ejm7;k7S ¼ 49
4 J ) 49

2 ¼ Ejm7;k7S � Ejm7;m7S: ð5Þ
An identical value for Ejk7;m7S is obtained from the
expectation value, /m7;k7jĤjm7;k7S; directly and this
is how one can correlate computed SDFT energies with
coupling parameters in practice; the point of this
discussion is to demonstrate the equivalence of this
procedure with the broken-symmetry approach (see
Fig. 1).
When we refer calculated energies differences Ejm7;m7S

and Ejk7;m7S to exchange couplings ðJ 0Þ in the Ising
Hamiltonian, the ‘‘pseudo-spin’’ vector takes only two
values, +1 ðaÞ and �1 ðbÞ; and as a result we obtain
2J 0 ¼ Ejm7;k7S � Ejm7;m7S: ð6Þ
We use the Ising exchange constants below, and to make
an identification to Heisenberg coupling constants, it is
clear that J ¼ ð 4

49
ÞJ 0:

4. Computational details

The electronic structure of our model of Gd2Cl3 (see
below) was investigated by use of density functional
theory (DFT) with the Becke exchange functional [31]
and the Lee–Yang–Parr correlation functional [32]. All
the calculations presented here were performed using the
DMol3 program [33–35] from the Cerius2s suite of
programs. The double numerical basis including d-
polarization function, DND, was employed in DMol3

calculations for all. The size of the DND basis is
comparable to Gaussian 6-31G� basis sets, but the
numerical basis set is more accurate than a Gaussian
basis set of the same size because it is numerically
optimized [33]. A small frozen-core ð1s2s2p3s3p3dÞ
effective potential was used for Gd. All calculations
included scalar relativistic effects and open-shell config-
urations.
Structural parameters for the heavy elements (Gd and

Cl) were taken from the X-ray crystallographic data for
the condensed cluster phase Gd2Cl3; as described below
[36]. In constructing a 1-D model compound, phosphine
oxide ligands, OPH3; were used to ‘‘cap-off ’’ the
terminal positions of the Gd4Cl6 chains; partial geome-
try optimizations for the positions of the phosphine
oxides were performed using an analogous yttrium
model system, Y4Cl6ðOPH3Þ2: All calculations of
competing magnetic states were conducted using a
common geometry. The convergence criterion for the
energy was set at 10�6 a:u: Band calculations and
quantities derived there from (energies, spin densities)
were carried out using a mesh of 10 k-points for all the
states, except the ferromagnetic and antiferromagnetic
ground spin-state patterns where 25 k-points were used
to obtain density-of-states (DOS) plots of higher
resolution. Since all band calculations were carried out
on a system with a doubled cell, Gd8Cl12ðOPH3Þ4; the
10 k-point mesh is equivalent to a 20 k-point set for the
conventional unit cell. Typical differences between spin
pattern energies using a mesh of 10 and 25 k-points was
about 0.17%.
Recent investigations indicate that calculated J values

may be overestimated using the BLYP functional [37].
As we discuss below, the origin of f –f effective exchange
is the local d–f exchange interaction. It is therefore not
clear that such concerns should apply to cases where the
principal source of effective exchange is local d–f

interaction, if we know the accuracy with which the
local d–f interaction is calculated in the functional.

5. Description of Gd2Cl3

Gd2Cl3 has a structure wherein linear chains of trans-
edge-sharing metal octahedra are bridged at the apices
of the metal chains and capped on triangular faces by
chlorine atoms, as shown in Fig. 2 [36,38]. As pointed
out in previous studies, the structure may be formally
described as a condensation M6X8 octahedral clusters to
form single chains [14]. Nevertheless, the ‘‘octahedra’’
are quite distorted: the Gd–Gd distances on the shared
edges significantly shorter ð3:37 (AÞ than Gd–Gd dis-
tances parallel with the chain propagation axis ðb ¼
3:90 (AÞ; Gd–Gd distances between basal and apical
atoms range from 3.71 to 3:78 (A: Gd2Cl3 is a
semiconductor with band gap of B0:85 eV [39], as
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inferred from resistivity measurements and the presence
of a gap is consistent with the measured photoelectron
spectrum and published electronic structural calcula-
tions [40].
Previous band structure calculations indicate that the

sesquichlorides have three low-lying, overlapping occu-
pied d bands that contain the metal–metal bonding of
the shared edge and these bands split off from the
remainder of the d block, giving a gap of B0:7 eV [41].
The semiconducting behavior is consistent with 6 metal
d valence electrons per Gd4Cl6 unit cell available for
metal–metal bonding in the structure. A semilocalized
bonding picture of isotypic Y2Cl3 extracted from the
band structure revealed that metal–metal bonding
orbitals consist of two 4c–2e bonds and one 2c–2e bond
per unit cell, further clarifying both the structure–
property relationships of these compounds [42].
Although Gd2Cl3 has been investigated by EPR,

NMR, and magnetic susceptibility measurements [43],
the results of neutron diffraction experiments on single
crystals of Gd2Cl3 provided the most detailed informa-
tion concerning a 3-D antiferromagnetic phase transi-
tion at 26:8 K leading to a magnetic supercell ða; b; 2cÞ
[44]. Within the 1-D chains, the moments of the Gd

atoms at the condensed octahedra sites are aligned along
the chain direction, but are in an antiparallel arrange-
ment across the short Gd–Gd bond shared by the
octahedra as depicted in Fig. 3. The moments on the
apex atoms do not order, as one might expect, given the
geometric frustration that should occur in relation to the
spin ordering from the basal atoms. Adjacent chains are
coupled antiferromagnetically.

6. Model structure

While a study of the 3-D magnetic ordering in Gd2Cl3
would be desirable, we have so far limited our
investigation to the ordering in 1-D chain models of
Gd2Cl3: To build a meaningful 1-D model, important
considerations include preservation of the bonding
character found in the chains of condensed octahedra
and maintenance of the coordination environment
around Gd. In the structure of Gd2Cl3; each metal
center is coordinated to the chloride atom of two
adjacent 1-D condensed chains forming a 2-D sheet,
allowing for additional interactions through the basal
and apical Gd–Cl–Gd bridges. However, since interac-
tions within the chains are likely to control the 1-D
magnetic structure, only those contacts will be included
in our model structure. Hence, our unit cell consists of
eight gadolinium atoms, 12 chloride ligands, and four
phosphine oxide ligands, OPH3; as shown in Fig. 2. Our
model preserves the metal backbone of the chain and the
chloride ligands that both cap the triangular side faces
of the octahedra and bridge between two octahedra
within the chain. Each chain was separated by a distance
of 12:57 (A along the c direction and 11:87 (A along the a

direction. Phosphine oxide ligands fill the coordination
site provided by the apical Gd–Cl contacts lost upon
separating the chains. Doubling of the unit cell in the
chain direction ðbÞ was necessary for two reasons: (1)
crowding of adjacent phosphine oxide ligands is avoided
by alternating their orientation within the doubled cell;
(2) necessary flexibility in calculations of alternative
antiferromagnetic spin arrangements is thereby enabled.
Partial geometry optimizations for the positions of the
phosphine oxides were performed using an analogous
yttrium model system, Y4Cl6ðOPH3Þ2; this resulted in
Ln–O–P angles of 38:8� and 120� to prevent close H–H
contacts. The closest H–H distance is 2:97 (A; well
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Fig. 2. Relationship between the model Gd8Cl12ðOPH3Þ4 and the

parent Gd2Cl3 structure.

Fig. 3. Intrachain magnetic ordering according to neutron diffraction

results [44]; vertices represent Gd atom positions.
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beyond van der Waals contact. Use of neutral phos-
phine oxide ligands allows one to avoid unphysical
charge density accumulation that would have accom-
panied the use of anionic ligands.

7. Results

7.1. 4 f –5d exchange in the Gd atom

Before directly considering Gd2Cl3; we present results
using SDFT calculations on the Gd atom. Particularly
relevant is a comparison between theory and experiment
for the energy gap between the electronic ground state
ð9DÞ and the first excited state ð7DÞ within the ground
configuration ð½Xe�4 f 75d16s2Þ: Qualitatively, this calcu-
lation yields the exchange energy penalty required to flip
the 5d-electron spin in opposition to the 4 f 7 spins (see
Fig. 5 below). The energy difference is calculated using
the two determinants, Fm7;m and Fm7;k; where the
subscript notation indicates the spin of the seven 4 f

electrons and the single 5d electron separately; Fm7;m is a
spin eigenfunction, but the spin contamination of Fm7;k

must be accounted for.
The f 7d1 configuration yields five distinct 7D states,

but four of these derive from coupling the d electron
ð2DÞ with sextet excited states of the 4 f 7 core
ð6P; 6D; 6F ; 6GÞ and spectroscopic data show that such
states lie very high in energy. To a good approximation
then, the spin contamination of Fm7;k is accounted for
by constructing an S ¼ 3 spin eigenfunction that is
orthogonal to the 9D ground state, since it is the only
other state with a 4 f 7ð8SÞ core. The components of 9D
with MS ¼ 4 and MS ¼ 3 are

Cð9D; 4Þ ¼ Fm7;m;

Cð9D; 3Þ ¼
ffiffiffi
1

8

r
Fm7;k þ

ffiffiffi
7

8

r
1ffiffiffi
7

p
X7
i¼1

Fm6ki ;m

" #
; ð7Þ

where the second function can be simply derived from
the first by operating with a spin-lowering operator. For
the orthogonal components of 7D with MS ¼ 3; we can
write

Cð7D; 3ÞD
ffiffiffi
7

8

r
Fm7;k � 1ffiffiffi

8
p 1ffiffiffi

7
p

X7
i¼1

Fm6ki ;m

" #
ð8Þ

which, as can be readily confirmed, is a spin eigenfunc-
tion with S ¼ 3: From these two expressions, we obtain
an expression for Fm7;k in terms of the pure state
functions:

Fm7;k ¼
ffiffiffi
7

8

r
Cð7D; 3Þ �

ffiffiffi
1

8

r
Cð9D; 3Þ: ð9Þ

Assuming this approximate relation applies, we can use
the exact electronic Hamiltonian (excluding, say, spin–
orbit coupling) to evaluate Em7;k ¼ /Fm7;kjHjFm7;kS;

which leads to a simple expression for the energy
difference between the 9D ground state and the lowest
7D excited state in terms of energies calculated with
SDFT:

Em6;k ¼ 7
8

Eð7DÞ þ 1
8

Eð9DÞ;

Eð7DÞ � Eð9DÞ ¼ 8
7
½Em7;k � Eð9DÞ� ¼ 8

7
½Em7;k � Em7;m�:

ð10Þ
The calculated gap using the BLYP functional and the

double numeric basis sets discussed in the computa-
tional section is 5693 cm�1; about 89% of the spectro-
scopically measured gap of 6394 cm�1 (after averaging
over spin–orbit splitting in both states) [45].
A final complication that should be mentioned arises

from a well-known artifact of DFT: although both the
9D and 7D states are orbitally degenerate, the energies
computed for these states with all current functionals in
fact depends slightly on which d orbital is actually
occupied [46]. In our case, we examined the difference of
occupying one of the four spatially equivalent ‘‘clo-
verleaf ’’ orbitals (i.e., not dz2 ) in both states, and the
energy difference given reflects this choice.

7.2. Magnetic ordering in Gd2Cl3

In order to directly assess the ability of the broken-
symmetry SDFT approach to reproduce the magnetic
ordering pattern observed in Gd2Cl3; we carried out
electronic band calculations for seven competing spin
patterns: one ferromagnetic, one ferrimagnetic, and five
antiferromagnetic. The calculated relative energies for
such patterns are shown in Fig. 4. In each case we also
show the symmetry of the potential that the 4 f electron
‘‘cores’’ impose on the motion of the 5d and other
valence electrons. As we shall argue below, the origin of
the differences computed in all our calculations is the
d-band mixing induced by the perturbation of intra-

atomic 4 f –5d exchange. Since the atomic calculations
underestimate the magnitude of that exchange byB11%
(see above), we expect that calculated energy differences
for this model are probably an underestimation of the
‘‘true’’ differences between the spin patterns.
The most important and consistent characteristic of

the results in Fig. 4 is a preference for antiferromagnetic
spin patterns in comparison to the ferro- or ferrimagne-
tically coupled spin arrangements. The lowest energy
calculated pattern is in correspondence with the
experimentally observed spin ordering as far as the
basal atoms are concerned, i.e., antiparallel spin
alignment prevails for atoms across the basal planes of
the condensed octahedra. (The lack of significant
magnetization on the apical atoms cannot be modeled
in our calculation.) Interestingly, the second lowest
calculated pattern does not reproduce the observed
basal spin ordering. Indeed, all the two patterns seem to
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have in common is their translational periodicities—
both patterns have the same cell length as the structure
ðbÞ: Spin patterns in which 4 f 7 spins alternate along the
chain propagation axis (with 2b periodicities) all lie
higher in energy.
It is tempting to account for the marked difference

in the two lowest energy patterns, Antiferro I and
Antiferro II, in terms of the Ising coupling parameters
that appear in the difference between the two orderings’
Ising energy expressions: EðIIÞ � EðIÞ ¼ 4J 0

1 � 16J 0
3: If

the antiferromagnetic coupling between opposite basal
atoms ðJ 0

1Þ is strong enough, then Antiferro I prevails
as the ground state; if the antiferromagnetic coupling
between basal and apical atoms ðJ 0

3Þ is strong
enough (greater than 25% of J 0

1), then Antiferro II will
prevail. Experiment favors the former interpretation,
but as we shall see below, the Ising analysis runs into
difficulties when one attempts to account for all the
calculated results in Fig. 4, as we shall see in what
follows.
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Fig. 4. Seven spin patterns, energies, and Ising expressions.
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SDFT calculations and the broken-symmetry ap-
proach have been successfully applied to the estimation
of the exchange coupling constants for a variety of
binuclear transition metal complexes, with good agree-
ment between computed and experimental values [47].
From the computed results in Fig. 4, let us examine
whether we can extract values for the Ising exchange
parameters for this system. Under the (Ising) hypothesis
of exchange interaction additivity, it is a simple matter
to assign to each spin pattern an expression for the
magnetic energy of each spin pattern, as shown in Fig. 4.
The energy associated with any one spin pattern, A, can
be written as

Espin pattern A ¼ �
X
ioj

ZijŜz;iŜz;jJ
0
ij ; ð11Þ

where Ŝz;i and Ŝz;j are respective pseudo-spins (+1 and
�1) on sites of types i and j for pattern A, J 0

ij is the
magnetic coupling constant between them, and Zi; j is
the number of i–j neighbors. Energy differences are
readily evaluated. In the present case, four magnetic
constants have been considered, namely J 0

1; J 0
2; J 0

3; and
J 0
4; as defined in Fig. 4. (To scale these values for the
Heisenberg Hamiltonian, all J 0

i values need to be
multiplied by 49

4
:) J 0

1 and J 0
2 represent the basal-to-basal

couplings across the octahedra and along the chain
propagation axis, respectively. J 0

3 represents the ex-
change coupling between apical–basal atom pairs and J 0

4

represents the coupling between two apical atoms along
the chain. Because the ferrimagnetic spin pattern gives
rise to an asymmetric charge density in which structu-
rally equivalent apical atoms have differing total charge,
we dropped it from consideration in evaluating magnetic
coupling constants (its inclusion does not alter the
fundamental nature of our conclusions, however). Of
the remaining six spin patterns, one may compute five
independent energy differences from the SDFT results
and each difference may be set equal to an Ising
parameter expression; we therefore have five equations
involving four J 0

i values (Table 1). Finally, we tested the
efficacy of the Ising model in fitting the SDFT results by
dropping one of each of the remaining equations in turn
and solving the remaining system of equations analyti-
cally. The results of this test are shown in Table 2.
One might presume that we could identify and order

the pairwise coupling parameters in magnitude so that
we could to correlate our SDFT results. However, the J 0

i

values vary widely when different energy differences are
used to determine the spin pattern energies and such an
assessment discussing strength and, sometimes, even
signs cannot be made. More importantly, after obtaining
coupling constants that well represent the four energy
differences, the calculated energies of the patterns not
used in each case (ferrimagnetic and other dropped
pattern) is poor. We conclude that the Ising model does
not provide an adequate description of d-electron-

mediated f –f exchange interactions. Assuming the
broken-symmetry approach is valid for determining
parameters in a Heisenberg model (i.e., that the
discussion of Gd2 dimers given above can be generalized
to the band case), a Heisenberg model would also be
inadequate. If Gd2Cl3 were metallic, this would prob-
ably be expected since it is commonplace to treat
metallic systems by considering the effect of exchange on
electrons near the Fermi surface [48–50]. It is perhaps
more surprising that these pairwise exchange models fail
even for this closed shell (semiconducting) compound.
Whatever the limitation of our present treatment (e.g.,
basis set or the use of the BLYP functional), we can
reasonably assume that an improvement in theory is
unlikely to produce results that revive a pairwise
exchange model, with the possible exception of a model
includes significant anisotropic exchange.
Previous analysis had postulated that 1-D magnetic

correlations in Gd2Cl3 persist at temperatures well
above the 3-D ordering temperature of 26:8 K [15].
While this suggestion is intuitively appealing, our results
leave us unable to comment on this speculation. As we
have seen, pairwise exchange parameters are elusive and
without them, the excitation energies that accompany
local spin fluctuations are difficult to estimate with the
results we have at hand.

7.3. d-Electron mediated exchange

In previous work, we demonstrated that there exists a
straightforward interpretation of d-electron-mediated
f –f exchange involving the use perturbation theory. To
explain the general features of this approach, it is useful
to summarize our treatment of ½Gd3I6ðOPH3Þ12�

nþ ðn ¼
1; 2; 3Þ; a trinuclear cluster that mimics the three-center
bonding found in the ferromagnetic conductor GdI2
[49,51,52]. In that study, we showed that the d0 system
ðn ¼ 3Þ exhibits negligible exchange coupling of the Gd
4 f 7 moments, in the closed shell two-d-electron system
ðn ¼ 1Þ antiferromagnetic coupling of 4 f 7 moments was
favored, and the open shell one-d-electron system
ðn ¼ 2Þ exhibits strong ferromagnetic coupling of the
4 f 7 moments. A perturbative molecular orbital (PMO)
model explains how the 4 f 7–d exchange perturbation of
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Table 1

Five possible equations used in calculating Ising coupling constants

(J’s)a

DEA2B

P
i; j Zi; jJi; j Energy

difference ðcm�1Þ

DEFerro2Antiferro V �8J2 � 16J3 1280

DEAntiferro V2Antiferro IV �8J4 8.9

DEAntiferro IV2Antiferro III �4J1 138

DEAntiferro III2Antiferro II 4J1 þ 8J2 � 16J3 þ 8J4 221.8

DEAntiferro II2Antiferro I �2J1 þ 16J3 89.6

aFerrimagnetic spin pattern was not included (see text).
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the d-based molecular orbitals brings about these
results. To describe our analysis, first consider an
‘‘unperturbed’’ system: a Gd atom with a 4 f 75d16s2

configuration and in the presence of an ‘‘averaged ’’
4 f –5d exchange interaction (Fig. 5). In this hypothetical
situation, the 5d electron experiences an average
exchange field effect from the 4 f 7 half-shell and has
no preferred spin orientation. Upon applying the
exchange perturbation, a d-electron with its spin aligned
with (against) the 4 f 7 moment is stabilized (destabi-
lized) by an energy d:
We can treat the Gd3 trinuclear cluster model in the

same spirit and adopt the simple three-center bond
model shown in Fig. 6 to account for the 3 MOs of this
three-center bonding system. D represents the gap
between the bonding orbital and the degenerate
antibonding orbitals. Orbital plots clearly demonstrate
that the d-electron(s) in the d1 ðd2Þ systems reside in a
delocalized three-center bond orbital—underlining the
plausibility of this treatment. For simplicity, the MOs
are assumed to be a linear combination of Gd d-orbitals
with no ligand contribution or 6s-hybridization taken
into account.
In the all-spin-aligned ‘‘ferromagnetic’’ case, 4 f -

moment ordering simply induces a first-order splitting
of the a- and b-spin molecular orbitals, and since the
exchange potential felt by the d electrons maintains
symmetry, no symmetry breaking occurs and no

second-order perturbation effects are limited to mixing
of the occupied a0

1 orbital with orbitals of the same
symmetry. When one of the 4 f -moments is
flipped antiparallel with the others (‘‘ferrimagnetic’’
case), the exchange perturbation lowers the symmetry
and mixing between the bonding and antibonding
MOs is thereby induced, yielding a second-order
stabilization of both a and b spins (manifest in
polarization of each d-spin orbital toward 4 f 7 centers
of like spin).
In summary, when one has a closed d-shell system

(like the d2 trinuclear cluster), antiferromagnetic cou-
pling is inevitably favored because antiferromagnetic
4 f 7-spin patterns inherently break symmetry and mix
unoccupied orbitals into the occupied orbitals. Spatially,
this allows for the stabilizing effect of spin polarization
to occur. Any f 7 spin ordering that is effective at
inducing 5d=6s spin polarization will tend to have lower
energy because such spin polarization allows the
delocalized electrons to spend more time in the vicinity
of the like-spin f -electrons. In general, there is no reason
to expect that such a mechanism of coupling should
produce a spin-state energy ordering that conforms to a
model built upon pairwise exchange coupling. With the
two parameters, d and D; we can achieve a satisfactory
fit with the SDFT energies calculated for six different
‘‘states’’ (i.e., determinants) for ½Gd3I6ðOPH3Þ12�

nþ

(n ¼ 1; 2) systems [13].
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4f

turn on
f-d exchange

Fig. 5. Electronic splitting of Gd atom as a function of 4 f –5d exchange perturbation.

Table 2

Six possible solutions for Ising coupling constants (J 0
i values)

J 0
i Omitted spin pattern

Antiferro IV Antiferro V Ferro Antiferro II Antiferro III Antiferro I

J 0
1 �228 �34 �34 �34 �228 �34

J 0
2 �57 a 40 40 �57 �57

J 0
3 �51 3 �3 �100 �51 �51

J 0
4 96 a �1 �1 �1 �1
aUndetermined values due to linear dependence of difference equations.
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In view of the foregoing discussion and the closed d-
shell (semiconducting) nature of our Gd4Cl6ðOPH3Þ2
model chains (and Gd2Cl3 itself), we should not be
surprised that all the low-energy spin patterns are
antiferromagnetic. We can identify features in DOS
plots obtained with various 4 f 7-spin patterns that show
how the extended chain system and trinuclear cluster are
analogous; see Fig. 7. As expected, the bands in the
vicinity of the Fermi level are Gd-localized. The results
amplify those of previous tight-binding calculations of
both Gd2Cl3 and its yttrium analog: three doubly-
occupied 5d bands (per Gd4Cl6 unit cell) are separated

by a significant gap from the rest of the low-lying
unoccupied metal hybridized d and s bands [41,42,53].
The calculated gap ranges from 0.68 to 1:0 eV for
different antiferromagnetic spin patterns with the gap
for Antiferro I equal to 0:82 eV: This is in good
agreement with the 0:85 eV band gap seen experimen-
tally for Gd2Cl3: The a- and b-DOS plots for all the
antiferromagnetic cases are identical because although
the a- and b-electrons localize on different atoms, the
a- and b-spin distributions are spread over symmetry-
equivalent sets of atoms. Examination of the a- and
b-DOS plots for the ferromagnetic spin pattern shows a
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Fig. 6. Treatment of 4 f –5d exchange interaction in model Gd3I6ðOPH3Þnþ
12 as a second-order perturbation to the system.

Fig. 7. DOS plots of the ferro spin pattern and antiferro I spin pattern.
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stabilization and destabilization of the a- and b-
electrons, respectively. Since the exchange potential felt
by the d electrons maintains symmetry, the 4 f 7-spin
patterns induce little mixing between valence and
conduction band orbitals. In our qualitative perturba-
tion analysis then, this semiconducting ferromagnetic-
ordered system experiences little overall stabilization
because the first-order stabilization of a-spin d bands is
cancelled by destabilization of b-spin d bands and there
is little second-order stabilization. In contrast, while the
antiferromagnetic alternatives experience no net first-
order splitting between a- and b-spin d bands, both a-
and b-spin d bands are stabilized in second-order by the
valence-conduction band mixing induced by symmetry
breaking.
While DOS plots are useful in illustrating the

distinction between the ferro- and antiferromagnetic
cases, we gain no further insight into the specific
ordering among the antiferromagnetic alternatives.
Though a specific ‘‘orbital explanation’’ for the calcu-
lated ordering is not apparent, it is nevertheless
instructive to examine the 5d and 6s spin polarizations
(i.e., the local differences in a- and b-spin populations).
These are given for all of the calculated spin patterns
obtained via Mulliken population analysis (summed
over all k-points calculated) and gathered in Table 3. On
each Gd atom, for every spin pattern, the 5d and 6s spin
polarizations mirror the spin orientations of 4 f 7 core
for that atom—hence, we have given only the polariza-
tion magnitudes in Table 3. We have combined 5d

populations with 6s populations because they track with
each other, though the 6s polarization is consistently
smaller. Typically, total 5d populations are about 2.3–
2.7 times larger than the 6s populations, while the
polarization for 5d populations are 5–6 times larger than
the polarizations of the 6s populations. (This reflects the
fact that the intraatomic exchange interaction between
the 4 f electrons and the more diffuse 6s electrons is
typically about one-third that of the 4 f –5d interaction.)

The data in Table 3 are unambiguous in confirmation
of our perturbation-theoretic interpretation. The sym-
metry-breaking antiferromagnetic patterns all induce
much greater spin polarization than is seen in the
ferromagnetic case. Beyond that, however, we can see
that the extent of spin polarization is monotonically
correlated with the relative stability of each spin pattern;
the greatest spin polarization is seen in the computed
ground-state pattern. One concern regarding the com-
parison of these results with experiment is the signifi-
cance of the apical atom spin-polarizations—recall that
neutron diffraction results showed no evidence of
magnetic order on the apical atom positions [44]. A
comparison of patterns Antiferro IV and Antiferro V is
useful in this regard. These two spin orderings differ in
that the apical atom 4 f 7-spins alternate in pattern IV
and they remain ‘‘in-phase’’ in pattern V. They have
similar energies, separated by only 9 cm�1 per
Gd8Cl12ðOPH3Þ4 unit, and they exhibit virtually iden-
tical spin-polarization magnitudes. The clear implica-
tions are that apical–basal interactions are indeed
‘‘frustrated’’, even if a pairwise interaction model is
not a strictly appropriate means to reveal it, and that the
kind of apical–apical communication that would favor
ordering is also not present.

8. Concluding remarks

An analysis of Gd2Cl3 that correlates changes in spin
densities, specific orbital contributions to DOS features,
and spin-pattern variations is currently underway in our
laboratory. The feasibility of extending our analysis to
3-D will also be evaluated. At this point, it seems clear
that effective magnetic coupling in Gd-rich compounds
is amenable to perturbative analysis of the 5d=6s

electronic structure, since it is those delocalized electrons
that mediate the effective f –f coupling. The nature of
our approach lends itself well to considerations that are
‘‘chemical’’ in nature with an emphasis on orbitals and
orbital interactions.
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